Arm Assembly Language programming

5. Assembly
programming
principles

The previous chapters have covered the ARM instruction set, and using the
ARM assembler. Now we are in a position to start programming properly.
Since we are assuming you can program in BASIC, most of this chapter can
be viewed as a conversion course. It illustrates with examples how the
programming techniques that you use when writing in a high-level language
trandlate into assembler.

5.1 Control structures

Some theory

A program is made up of instructions which implement the solution to a
problem. Any such solution, or algorithm, may be expressed in terms of a
few fundamental concepts. Two of the most important are program
decomposition and flow of control.

The composition of aprogram relates to how it is split into smaller units
which solve a particular part of the problem. When combined, these units, or
sub-programs, form a solution to the problem asawhole. In high-level
languages such as BASIC and Pascal, the procedure mechanism allows the
practical decomposition of programs into smaller, more manageable units.
Down at the assembly language level, subroutines perform the same
function.

Flow of control in a program is the order in which the instructions are
executed. The threeimportant types of control structure that have been
identified are: the sequence, iteration, and decision.

An instruction sequence is simply the act of executing instructions one after
another in the order in which they appear in the program. On the ARM, this
action is aconsequence of the PC being incremented after each instruction,
unlessit is changed explicitly.

96

Arm Assembly Language programming

The second type of control flow isdecision: the ability to execute a sequence
of instructions only if acertain condition holds (e.g. | F..THEN..). Extensions
of this are the ability to take two separate, mutually exclusive paths

(I F..THEN...ELSE...), and a multi-way decision based on some value
(ON...PRQCC...). All of these structures are available to the assembly language
programmer, but he has to be more explicit about his intentions.

Iteration means looping. Executing the same set of instructions over and
over again is one of the computer's fortes. High-level languages provide
constructs such as REPEAT..UNTI L and FOR...NEXT to implement iteration.
Again, in assembler you have to spell out the desired action alittle more
explicitly, using backward (perhaps conditional) branches.

Some practice

Having talked about program structuresin afairly abstract way, we now
look at some concrete examples. Because we are assuming you have some
knowledge of BASIC, or similar high-level language, the structures found
therein will be used as a starting point. We will present faithful copies of

| F.. THEN...ELSE, FOR...NEXT etc. using ARM assembler. However, one of
the advantages of usng assembly language isits versatility; you shouldn't
restrict yourself to slavishly mimicking the techniquesyou usein BASIC, if
some other more appropriate method suggests itself.

Position-independence

Some of the examples below (for example the ON...PROC implementation
using a branch table) may seem dightly more complex than necessary. In
particular, address ng of data and routinesis performed not by loading
addresses into registers, but by performing a calculation (usually ‘hidden' in
an ADR directive) to obtain the same address. This seemingly needless
complexity is due to adesre to make the programs position-independent.

Position-independent code has the property that it will execute correctly no
matter wherein memory itisloaded. In order to possess this property, the
code must contain no references to absolute objects. That is, any internal
data or routines accessed must be referenced with respect to some fixed
point in the program. Asthe offset from the required location to the fixed
point remains constant, the address of the object may be calculated
regardless of where the program wasloaded. Usually, addresses are
calculated with respect to the current instruction. You would often see
instructions of the form:

.here ADDptr, pc, #object-(here+8)

97

Arm Assembly Language programming

to obtain the address of obj ect intheregister pt r. The +8 part occurs
because the PC isalways two instructions (8 bytes) further on than the
instruction which is executing, due to pipelining.

It is because of the frequency with which this calculation crops up that the
ADR directiveis provided. Aswe explained in Chapter Four, the line above
could be written:

ADRptr, object

Thereisno need for alabel: BASIC performs the calculation using the
current value of P%.

Instead of using PC offsets, a program can also access its data using base-
relative addressing. In this scheme, aregister is chosen to store the base
address of the program's data. It isinitialised in some position-independent
way at the start of the program, then all data accesses are relative to this.
The ARM's register-offset address mode in LDR and STR make this quite a
straightforward way of accessing data.

Why strive for position-independence? In atypical ARM system, the
programs you write will be loaded into RAM, and may have to share that
RAM with other programs. The operating system will find a suitable
location for the program and load it there. As'there’ might be anywherein
the available memory range, your program can make no assumptions about
thelocation of itsinternal routines and data. Thus all references must be
relative to the PC. It isfor this reason that branches use offsets instead of
absolute addresses, and that the assembler provides the

LDR <dest >, <expressi on>

form of LDR and STR to automatically form PC-relative addresses.

Many microprocessors (especially the older, eight-bit ones) make it
Impossible to write position-independent code because of unsuitable
instructions and architectures. The ARM makesiit relatively easy, and you
should take advantage of this.

Of course, there are bound to be some absolute references in the program.
You may haveto cal external subroutinesin the operating system. The
usua way of doing thisistouse aSW , which implicitly calls absolute
address & 0000008. Pointers handed to the program by memory-allocation
routines will be absolute, but as they are external to the program, this
doesn't matter. Thething to avoid is absolute references to internal objects.

98

Arm Assembly Language programming

Sequences

These barely warrant amention. Aswe have adready implied, ARM
Instructions execute sequentially unlessthe processor isinstructed to do
otherwise. Seguence of high-level assignments:

LET a
LET d

b+c
b-c

would be implemented by a similar sequence of ARM instructions:

ADD ra, rb, rc
SUB rd, rb, rc

IF-type conditions
Consider the BASIC statement:

| F a=b THEN count =count +1

Thismaps quite well into the following ARM sequence:

CMP ra, rb
ADDEQ count, count, #1

In this and other examples, we will assume operands are in registers to
avoid lots of LDRs and STRs. In practice, you may find a certain amount of
processor-to-memory transfer has to be made.

The ARM's ability to execute any instruction conditionally enables us to
make a straightforward conversion from BASIC. Smilarly, asimple
| F..THEN...EL SE such as this one

IF val <0 THEN sign=-1 ELSE sign=1
leads to the ARM equival ent:

TEQ val , #0
MVNM sign, #0
MOVPL sign, #1

The opposite conditions (M and PL) on the two instructions make them
mutualy exclusive (i.e. oneand only one of them will be executed after the
TEQ), corresponding to the same property in the THEN and EL SE parts of
the BASIC statement.

Thereisusualy apractica limit to how many instructions may be executed
conditionally in one sequence. For example, one of the conditional
instructions may itself affect the flags, so the original condition no longer
holds. A multi-word ADD will need to affect the carry flag, so this operation

99

Arm Assembly Language programming

couldn't be performed us ng conditional execution. The solution (and the
only method that most processors can use) is to conditionally branch over
unwanted instructions.

Below is an example of atwo-word add which executes only if RO=R1.:

CMP RO, R1

BNE noAdd

ADDS lol, lol, |02

ADC hil, hil, hi2
. hoAdd

Notice that the condition used in the branch isthe opposite to that under
which the ADD is to be performed. Hereisthe general translation of the
BASIC statements:

| F cond THEN sequencel ELSE sequence2 st atement

:"ARM version
:Obtain <cond>

B<NOT cond> seqQ2 ;I f <cond> fails then junp to ELSE
sequencel ; Ot herwise do the THEN part
BAL éhdSqu ; Skip over the ELSE part
.seqg2
sequence?2 ; This gets executed if <cond> fails
.endSeq2 o
st at ement ; The paths re-join here

At the end of the THEN sequence is an unconditional branch to skip the ELSE
part. Thetwo pathsregoin at endSeq2.

It isinformative to consider the relative timings of skipped instructions and
conditionally executed ones. Suppose the conditiona sequence consists of X
group oneinstructions. The table below gives the timingsin cyclesfor the
cases when they are executed and not executed, using each method.:

Branch Conditional
Executed s+ Xs Xs
Not executed 2n+s Xs

In the case where the instructions are executed, the branch method has to
execute the un-executed branch, giving an extracycle. This givesusthe
rather predictable result that if the conditional sequenceis only one
Instruction, the conditional execution method should always be used.

100

Arm Assembly Language programming

When the sequenceis skipped because the condition isfase, the branch
method takes 2n+s, or the equivalent to 5s cycles. The conditional branch
method takes one s cycles for each un-executed instruction. So, if there are
four or fewer instructions, at least one cycleis saved using conditional
instructions. Of course, whether this makes the program execute any faster
depends on the ratio between failures and successes of the condition.

Before we leave the | F-type constructions, we present a nice way of
implementing conditions such as:

IF a=1 OR a=5 OR a=12...

It uses conditional execution:

TEQ a, #1
TEQNE a, #5
TEQNE a, #12
BNE fail ed

If the first TEQgives an EQresult (i.e. a=1), the next two instructions are
skipped and the sequence ends with the desired flag state. If a<>1, the next
TEQis executed, and again if this gives an EQresult, the last instruction is
skipped. If neither of those two succeed, the result of the whole sequence
comes from the final TEQ.

Another useful property of TEQisthat it can be used to test the sgn and zero-
ness of aregister in oneinstruction. So athree-way decision could be made
according to whether an operand was less than zero, equal to zero, or
greater than zero:

TEQ RO, #0

BMI neg
BEQ zero
BPL pl us

In this example, one of three labels isjumped to according to the sign of RO.
Note that the last instruction could be an unconditional branch, as PL must
be true if we've got that far.

The sequence below performs the BASIC assignment a=ABS(a) using
conditional instructions:

TEQ a, #O0
RSBM a, #0 :if a<0 then a=0-a

Asyou have probably realised, conditiona instructions alow the elegant
expresson of many ssimpletypesof | F... construct.

101

Arm Assembly Language programming

Multi-way branches

Often, a program needs to take one of several poss ble actions, depending
on avalue or acondition. There are two main ways of implementing such a
branch, depending on the tests made.

If the action to be taken depends on one of afew specific conditions, it is best
implemented using explicit comparisons and branches. For example,
suppose we wanted to take one of three actions depending on whether the
character in the lowest byte of RO was aletter, adigit or some other
character. Assuming that the character set being used is ASCII, then this can
be achieved thus:

CMP RO, #ASC" 0" ;Less than the |owest digit?
BCC doOt her :Yes, so nust be 'other'
CMP RO, #ASC"9" ;Is it a digit?
BLS doDi gi t ; Yes
CMP RO, #ASC" A" ; Between digits and upper case?
BCC doOt her :Yes, so 'other'
CMP RO, #ASC"Z" ;Is it wupper case?
BLS doLetter ;. Yes
CMP RO, #ASC" a" ; Between upper and | ower case?
BLT doOt her :Yes, so 'other'
CMP RO, #ASC"z" ; Lower case?
BHI doOt her :No, so 'other'
.doLet ter
B next Char : Process next character
.doDi gi t
B next Char : Process next character
.doOt her
. hext Char

Note that by the time the character has been sorted out, the flow of control
has been divided into three possible routes. To make the program easier to
follow, the three destination labels should be close to each other. Itisvery
possible that after each routine has done its job, the three paths will
converge again into asingle thread. To make thisclear, each routine is
terminated by a commented branch to the meeting point.

A common requirement is to branch to a given routine according to arange
of values. Thisistypified by BASIC'sON. . . PROC and CASE statements.
For example:

ON x PROCadd, PROCdel et e, PROCamend, PROCI i st ELSE PROCerr or

102

Arm Assembly Language programming

According to whether x hasthevauel, 2, 3 or 4, one of the four procedures
listed isexecuted. The ELSE... part allowsfor x containing a value outside
of the expected range.

One way of implementing an ON... type structurein assembly languageis
using repeated comparisons:

CMP choi ce, #1 : Check against lower limt

BCCerror ; Lower, so error

BEQadd ;choice = 1 so add

CMP choi ce, #3 ; Check for 2 or 3

BLT del ete ;choice = 2 so delete

BEQanmend ;choice = 3 so anmend

CMP choi ce, #4 : Check against upper limt

BEQI i st :If choice = 4 list else error
. error

Although thistechnique is finefor small ranges, it becomes large and slow
for wide ranges of choi ce. A better techniquein thiscase it to use abranch
table. A list of branchesto the routinesis stored near the program, and this
Is used to branch to the appropriate routine. Below is an implementation of
the previous example using this technique.

DIM org 200
choice = 0
t =1
sp = 13
link = 14

REM Range of |egal val ues
mn = 1
max = 4
WiteS = 1
NewLine = 3
FOR pass=0 TO 2 STEP 2
P%-or g
[opt pass
;Multiway branch in ARM assenbl er
;choice contains code, mn..max of routine to call
;1 f out of range, error is called
STMFD (sp)!,{t,link}
SUBS choice, choice, #mn ;Choice <m n?

BCC error :Yes, SsO error

CMP choi ce, #mx-mn : Choice >max?

BHI error :Yes, soO error

ADR link, return ; Set-up return address

ADR t,table : Get address of table base
ADD PC, t, choice, LSL #2;Junp to table+choice*4

.error

103

SW
EQUS
EQUB
ALl GN

.return
SW
L DMFD

: Tabl e of
.tabl e

B

B

B

B

. add
SW
EQUS
EQUB
ALl GN
MOV

. del ete
SW
EQUS
EQUB
ALl GN
MOV

. amend
SW
EQUS
EQUB
ALl GN
MOV

st
SW
EQUS
EQUB
ALl GN
MOV

]

NEXT

REPEAT

Arm Assembly Language programming

WiteS
"Range error"
0

NewLi ne
(sp)!.,{t, PC}

branches to routines

add
del et e
amend
i st

WiteS
“"Add conmand”
0

PC, |i nk
WiteS
"Del ete conmmand"
0
PC, |i nk
WiteS
"Amend conmmand"
0
PC, | i nk
WiteS
"List command"

0

PC, I'i nk

| NPUT "Choice ", A%

CALLorg

UNTI L FALSE

Thefirst four lines check the range of the valuein choi ce, and call err or
if it isoutside of the rangem n to max. It isimportant to do this, otherwise
abranch might be madeto an invalid entry in the branch table. Thefirst test

104

Arm Assembly Language programming

uses SUBS instead of CMP, so choice is adjusted to the range 0 to max- m n
instead of m n to max.

Next, the return address is placed in R14. The routines add, del et e etc.
return asif they had been called usng BL, i.e. use areturn address in R14.
To do this, we use ADR to place the address of the label r et ur n into R14,
this being where we want to resume execution.

The next ADR obtains the base address of the jump tablein the registert .
Finally, the ADD multiplieschoi ce by 4 (using two left shifts) and adds this
offset to the table's base address. The result of the addition is placed in the
program counter. This causes execution to jump to the branch instruction in
the table that was denoted by choi ce. From there, the appropriate routine
Is called, with the return address sill in R14.

As we mentioned in the position-independent code section, this may seem a
little bit invol ved just to jump to one of four locations. Remember though
that the technique will work for an arbitrary number of entriesin the table,
and will work at whatever address the program is loaded.

Loops

Looping isvital to any non-trivial program. Many problems have solutions
that are expressed in an iterative fashion. There are two important classes
of looping construct. Thefirst islooping while, or until, agiven conditionis
met (e.g. REPEAT and WHI LE loopsin BASIC). The secondislooping for a
given number of iterations (e.g. FORloops). Infact, the second classisreally
aspecid case of the genera conditiona loop, the condition being that the
loop has iterated the correct number of times.

An important characteristic of any looping construct iswhere the test of the
looping condition is made. In BASIC REPEAT loops, for example, the test is
made at the corresponding UNTI L. This meansthat the instructions in the
loop are always executed at |east once. Consider this example:

REPEAT
IF a>b THEN a=a-b ELSE b=b-a
UNTIL a=b

Thisisasimple way to find the greatest common divisor (GCD) of a and b.
If a=b (and a<>0) when theloop is entered, the result is an infinite loop as
on the first iteration b=b- a will be executed, setting b to 0. From then on,

a=a- 0 will be executed, which will never make a=b.

The VHI LE loop tests the condition at the 'top’, before its statements have
been executed at all:

105

Arm Assembly Language programming

VWH LE a<>b
|IF a>b THEN a=a-b ELSE b=b-a
ENDWHI LE

Thistime, if a=Db, the condition at the top will fail, so theloop will never be
executed, leaving a=b=GCD(a,b).

Below are the two ARM equiva ents of the REPEAT and VWHI LE loop
versions of the GCD routine:

;Find the GCD of ra,rb

;Fallible version using 'repeat' |oop
. repeat
CMP ra,rb : REPEAT | F a>b
SUBGT ra,ra,rb ; THEN a=a-b
SUBLE rb,rb,ra : ELSE b=b-a
CMP ra,rb : UNTI L
BNE repeat ; a=b
;Find GCD of ra,rb, using "while [|oop
.while
CMP ra,rb :VWHI LE a<>b
BNE endwhi | e
SUBGT ra,ra,rb ; |F a>b THEN a=a-b
SUBLE rb,rb,ra ; ELSE b=b-a
B whi | e : ENDWHI LE
.endwhi | e

Notice that the difference between the two is that the WHI LE requires a
forward branch to skip theinstructionsin the body of theloop. Thisisnot a
problem for an assembler, which has to cope with forward references to be
of any use at all. In aninterpreted language like BASIC, though, the need to
scan through a program looking for a matching ENDVWHI LE is something of
aburden, which iswhy some BASIC's don't have such structures.

Because both of the code sequences above are direct translations of high-
level versions, they are indicative of what we might expect a good compiler
to produce. However, we are better than any compiler, and can optimise
both sequences slightly by abit of observation. Inthefirst loop, we branch
back to an instruction which we have just executed, wasting alittletime. In
the second case, we can use the conditional instructions to eliminate the first
branch entirely. Here are the hand-coded versions:

;Fallible version using 'repeat'’

CMP ra,rb : REPEAT | F a>b
. repeat

SUBGT ra,ra,rb ; THEN a=a-b

SUBLE rb,rb,ra : ELSE b=b-a

CMP ra,rb : UNTI L

BNE repeat ; a=b

106

Arm Assembly Language programming

;Find GCD of ra,rb, using "while 1oop

.whil e
CMP ra,rb . REPEAT
SUBGT ra,ra,rb : IF a>b THEN a=a-b
SUBLT rb,rb,ra) ELSE | F a<b b=b-a
BNE whi | e cUNTI L a=b endwhi | e

By optimising, we have converted the WHI LE loop into a REPEAT loop with
adlightly different body.

In general, a REPEAT-type structure is used when the processing in the
'‘body' of the loop will be needed at |east once, whereas WHI LE-type loops
have to be used in situations where the 'null’ case is adistinct possibility.
For exampl e, string handling routines in the BASIC interpreter have to ded
with zero-length strings, which often means aWHI LE looping structureis
used. (See the string-handling examples later.)

A common special case of the REPEAT loop is the infinite loop, expressed as.

REPEAT
REM do sonet hi ng
UNTI L FALSE

or in ARM assembler:

.l oop
; do sonet hing
BAL | oop

Programs which exhibit this behaviour are often interactive ones which take
an arbitrary amount of input from the user. Again the BASIC interpreter isa
good example. The exit from such programsis usualy through some 'back
door' method (e.g. calling another program) rather than some well-defined
condition.

Since FOR loops are a specia case of general 1oops, they can be expressed in
terms of them. The FOR loop in BBC BASIC exhibits a REPEAT-like
behaviour, in that the test for termination is performed at the end, and it
executes at least once. Below isatypical FOR loop and its REPEAT
equivalent:

REM A typical for | oop
FOR ch=32 TO 126

VDU ch
NEXT ch

REM REPEAT | oop equival ent
ch=32
REPEAT

VDU ch

107

Arm Assembly Language programming

ch=ch+1
UNTI L ch>126

Theinitial assignment is placed just before the REPEAT. The body of the
REPEAT isthe same as that for the FOR, with the addition of the
incrementing of ch just before the condition. The conditionisthatch is
greater than the limit given in the FOR statement.

We can code the FOR loop in ARM assembler by working from the REPEAT
loop version:

;Print characters 32..126 using a FOR | oop-type construct
; RO holds the character

MOV RO, #32 :lnit the character
.l oop

SW WiteC Print it

ADD RO, RO, #1:Increnent it

CMP RO, #126 :Check the limt

BLE | oop ;Loop if not finished

Very often, we want to do something afixed number of times, which could
be expressed as aloop beginning FOR i =1 TO n... inBASIC. When such
loops are encountered in assembler, we can use the fact that zero results of
group one instructions can be made to set the Z flag. In such cases, the
updating of the looping variable and the test for termination can be
combined into oneinstruction.

For example, to print ten stars on the screen:

FOR i=1 TO 10
PRI NT "*";
NEXT i

could bere-coded in the form:

:Print ten stars on the screen
RO holds the star character, Rl the count
MOV RO, #ASC"*" ;Init char to print

MOV R1, #10 Init count
.l oop
SW WiteC Print a star
SUBS R1, R1, #1 : Next
BNE | oop

The SUBS will set the Z flag after the tenth time around the loop (i.e. when
R1 reaches 0), so we do not have to make an explicit test.

108

Arm Assembly Language programming

Of coursg, if the looping variable's current val ue was used in the body of the
loop, this method could not be used (unless the loop was of the form FOR

I =n TO 1 STEP -1..) aswe are counting down from the limit, instead of
up from 1.

Some high-level languages provide means of repeating a loop before the
end or exiting from the current loop prematurely. These two looping
‘extras’ are typified by the cont i nue and br eak statementsin the C
language. Cont i nue causes ajump to be made to just after the last
statement inside the current FOR, WHI LE or REPEAT-type loop, and br eak
does ajump to the first statement after the current loop.

Because cont i nue and br eak cause the flow of control to diverge from
the expected action of aloop, they can make the program harder to follow
and understand. They are usually only used to 'escape’ from some
infrequent or error condition. Both constructs may be implemented in ARM
using conditional or unconditional branches.

5.2 Subroutines and procedures

We have now covered the main control flow structures. Programs written
using just these constructs would be very large and hard to read. The
sequence, decision and loop constructs help to produce an ordered solution
to agiven problem. However, they do not contribute to the division of the
problem into smaller, more manageable units. Thisiswhere subroutines
comein.

Even the most straightforward of problemsthat oneislikely to use
computer to solve can be decomposed into aset of ssimpler, shorter sub-
programs. The motivations for performing this decomposition are several.
Humans can only take in so much information at once. In terms of
programming, apage of listing isa useful limit to how much a programmer
can reasonably be expected to digest in one go. Also, by implementing the
solution to asmall part of a problem, you may be writing the same part of a
later program. It issurprisng how much may be accomplished using
existing 'library' routines, without having to re-invent the wheel every time.

The topics of program decomposition and top-down, structured
programming are worthy of booksin their own right, and it is recommended
that you consult theseif you wish to write good programs in any language.
The discipline of structured programming is even more important in
assembler than in, say, Pascal, because it is easier to write treacherously
unreadable code in assembler.

109

Arm Assembly Language programming

A minima decomposition of most programs is shown in the block diagram
overleaf. Dataistaken in, processed in some way, then results output. If
you think about it, most programs would be rather boring if they depended
on absolutely no external stimulusfor their results.

Once the input, processing and output stages have been identified, work can
begin on solving these individual parts. Almost invariably thiswill involve
further decomposition, until eventually a set of routines will be obtained
which can be written directly in asuitably small number of basic instructions.

The way in which these routines are linked together, and how they
communicate with each other, are the subjects of the next sections.

v

| NPUT

'

PRCOCESSI NG

'

QuTPUT

v

A minimal useful program

Branch and link

The ARM BL instruction is asubroutine-calling primitive. Primitivein this
context means an operation which isimplemented at the lowest level, with
no more hidden detail.

Recall from Chapter Three that BL causes a branch to a given address, and
stores the return addressin R14. We will illustrate the use of BL to call the
three routines which solve avery ssmple problem. This may be expressed as
follows:. repeatedly read a single character from the keyboard and if it is not
the NUL character (ASCII code 0), print the number of 1 bitsin the code.

For comparison, the BASIC program below solves the problem using exactly
the same structure as the following ARM version:

110

Arm Assembly Language programming

REPEAT ch = FNreadChar

| F ch<>0 PROCout put (FNprocess(ch))
UNTIL ch=0
END

REM R I I S S R R R e b e e I b b R R R S S S A S S S 4

DEF FNr eadChar =GET
REM EE S S S I I S P I S S B b S S I S B L S I I S B I I S S
DEF FNpr ocess(ch)
LOCAL count
count =0
REPEAT
count =count + ch MXD 2
ch=ch DV 2
UNTIL ch=0
=count
REM R i i S I I i i S S I I I S b I L i i S S I I B S 4
DEF PROCout put (num)
PRI NT num
ENDPROC

There are four entities, separated by the lines of asterisks. At thetop isthe
'main program'. Thisis at the highest level and is autonomous. no other
routine calls the program. The next three sections are the routines which the
main program uses to solvethe problem. Asthisisafairly trivial example,
none of the subroutines calls any other; they are all made from primitive
instructions. Usually (and especialy in assembly language where primitives
arejust that), these 'second leve' routines would call even smpler ones, and
SO on.

Below isthelisting of the ARM assembler version of the program:

DIM org 200

sp = 13

link = 14

REM SW nunbers

WiteC = 0

NewLine = 3

ReadC = 4

FOR pass=0 TO 2 STEP 2

P%-or g

[opt pass

; Read characters and print the nunmber of 1 bits in the
;ASCI| code, as long as the code isn't zero.

STMFD (sp)!,{link} ; Save return address

. repeat
BL readChar ;Get a character in RO
CMP RO, #0 ;s it zero?
LDVMEQFD(sp) !, { PC} ;Yes, so return to caller
BL process ;Get the count in R1
BL out put ;Print RlL as a digit

B repeat ;Do it again

111

Arm Assembly Language programming

‘readChar - This returns a character in RO
;All other registers preserved

’. r eadChar

SW ReadC :Call the OS for the read
MOV PC, [|ink ; Return using R14

;process - This counts the nunber of 1s in RO bits 0..7
;It returns the result in R1
;On exit, Rl=count, R0=0, all others preserved

. process
AND RO, RO, #&FF ;Zero bits 8..31 of RO
MOV R1L, #O0 ;Init the bit count
. procLoop
MOVS RO, RO, LSR #1;DIV 2 and get MOD 2 in carry
ADC R1, R1, #0 ;Add carry to count
BNE procLoop ; More to do
MOV PC, [|ink ; Return with Rl=count
;output - print RL as a single digit
;On exit, RO=RlL + "O0", all others preserved
. out put
ADD RO, R1,#ASC'0"; Convert Rl to ASCII in RO
SW WiteC ;Print the digit
SW NewLi ne ;And a new i ne
MOV PC, link ; Return
]
NEXT
CALL org

Because of the way in which the program closdy follows the BASIC version,
you should not have much difficulty following it. Here are some points to
note. Inthe BASIC version, two of the subroutines, pr ocess and
readChar, arefunctions and pri nt isaprocedure. Inthe ARM version,
there is no such obvious distinction in the way the routines are called.
However, the fact that pr ocess andr eadChar return vaues to their
caler makes them equivalent to function, whereas process, which returns no
vaue of useto thecaller, is a procedure equivalent.

At the start of each routine is a short description of what it does and how it
affects the registers. Such documentation is the bare minimum that you
should provide when writing a routine, so that problems such as registers
being changed unexpectedly are easier to track down. In order to do this
when the operating system routines are used (e.g. the SW Wi t eCcal),
you have to know how those routines affect the registers. Thisinformation
should be provided in the system documentation. For now, we assume that
no registers are atered except those in which results are returned, e.g. RO in
SW ReadC.

112

Arm Assembly Language programming

In the routine pr ocess we use the ability to (a) set the C flag from the
result of shifting an <r hs> operand, and (b) preserve the state of the Z flag
over the ADC by not specifying the S option. Thisenables usto write an
efficient three-instruction version of the BASIC loop.

The routine out put assumes that the codes of the digit symbolsrun
contiguously from 0, 1, ...9. Using this assumption it isasmple matter to
convert the binary number 1..8 (remember &00 will never haveits1 bits
counted) into the equivalent printable code. Asthe ASCII code exhibitsthe
desired contiguous property, and isamost universally used for character
representation, the assumption is a safe one.

As none of the routines change thelink register, R14, they al return using a
simple move from the link register to the PC. We do not bother to use MOVS
to restore the flags too, as they are not expected by the main program to be
preserved.

If a subroutine calls another one using BL, then the link register will be
overwritten with the return addressfor thislater call. In order for the
earlier routine to return, it must preserve R14 before calling the second
routine. As subroutines very often call other routines (i.e. are 'nested’), to an
arbitrary depth, some way is needed of saving any number of return
addresses. The most common way of doing thisisto save the addresses on
the stack.

The program fragment below shows how the link register may be saved at
the entry to aroutine, and restored directly into the PC at the exit. Using
this technique, any other registerswhich have to be preserved by the routine
can be saved and restored in the same instructions:

; SUbEg. This is an exanple of using the stack to save
;the return address of a subroutine. In addition, RO,Rl
;and R2 are preserved.

jsubEg
STMFD (sp)!,{RO-R2,1ink}; Save link and RO-R2
C ;Do sonme processing

LDMED (sp)!,{RO-R2, pc}~ :Load PC, flags and RO-R2

The standard forms of LDMand STMare used, meaning that the stack isa
'full, descending’ one. Write-back isenabled on the stack pointer, since it
amost always will be for stacking operations, and when the PC isloaded
from the stack the flags are restored too, due to the ™ in the instruction.

113

Arm Assembly Language programming

Note that if the only 'routines’ called are SW ones, then thereis no need to
save thelink register, R14, on the stack. Although SW savesthe PC and
flagsin R14, it isthe supervisor mode's version of this register which is used,
and the user's one remains intact.

Parameter passing

When values are passed to aroutine, they are caled the parameters, or
arguments, of the routine. A routine performs some genera task. When
supplied with a particul ar set of arguments, it performs a more specific
action (it has been parameterized, if you like), and thejob it performsis
usually the same for a particular set of arguments. When aroutine returns
one or more vaues to its caller, these values are known as the results of the
routine.

The term 'subroutine' is usualy applied to a primitive operation such as
branch and link, which enables a section of code to be called then returned
from. When awell-defined method of passing parameters is combined with
the basic subroutine mechanism, we usually call this a procedure. For
example, out put inthe example above is a procedure which takes a
number between 0 and 9 in R1 and prints the digit corresponding to this.
When a procedureiscaled in order to obtain the resultsit returns, it iscalled
afunction.

You may have heard the terms procedure and function in relation to high-
level languages. The concept isequally vaid in assembler, and when the
procedures and functions of a high-level language are compiled (i.e.
converted to machine code or assembl er) they use just the primitive
subroutine plus parameter passing mechanisms that we describe in this
section.

In the example program of the previous section, the BASIC version used
global variables as parameters and results, and the assembler version used
registers. Usually, high-level languages provide a way of passing
parameters more safely than using global variables. The use of globalsis
not desirable because (a) the caller and callee have to know the name of the
variable being used and (b) global variables are prone to corruption by
routines which do not 'realise’' they are being used elsewherein the
program.

Using registersisjust one of the ways in which arguments and results can be
passed between caler and callee. Other methods include using fixed
memory areas and the stack. Each method hasits own advantages and
drawbacks. These are described in the next few sections.

114

Arm Assembly Language programming

Register parameters

On amachine like the ARM, using the registers for the communication of
arguments and resultsis the obvious choice. Registersarefairly plentiful (13
left after the PC, link and stack pointer have been reserved), and access to
themisrapid. Remember that before the ARM can perform any data
processing instructions, the operands must be loaded into registers. It makes
sense then to ensure that they are already in place when the routineis called.

The operating system routines that we use in the examples use the registers
for parameter passing. In general, registers which are not used to pass
results back are preserved during the routine, i.e. their values are unaltered
when control passes back tothecaller. Thisisapolicy you should consider
using when writing your own routines. If the procedure itself preserves and
restores the registers, there is no need for the caller to do so every timeit
uses the routine.

The main drawback of register parametersis that they can only conveniently
be used to hold objects up to the size of aword - 32-bits or four bytes. Thisis
fine when the data consists of single characters (such as the result of SW
Read(C) and integers. However, larger objects such as strings of characters
or arrays of numbers cannot use registers directly.

Reference parameters

To overcome the problem of passing large objects, we resort to a slightly
different form of parameter passing. Up until now, we have assumed that
the contents of aregister contain the value of the character or integer to be
passed or returned. For example, when we use the routine called pr ocess
in the earlier example, RO held the value of the character to be processed,
and on exit R1 contained the value of the count of the number one bits. Not
surprisingly, this method is called call-by-value.

If instead of storing the object itself in aregister, we store the object's
address, the size limitations of using registersto pass vaues disappear. For
exampl e, suppose a routine requires the name of afileto process. Itis
obviously impractical to pass an arbitrarily long string using the registers, so
we pass the address of where the string is stored in memory instead.

The example below shows how aroutine called w chS might be written and
caled. W chS takesthe address of astring in R1, and the length of the
string in R2. It printsthestring usingSW Wit eC.

Note that the test program obtains the address in a position-independent
way, using ADR. Thefirst action of wr chS is to save RO and the link register
(containing the return address) onto the stack. The use of stacks for holding

115

Arm Assembly Language programming

data was mentioned in ChapterThree, and we shall have more to say about
them later. We save RO because the specification in the comments states that
all registers except R1 and R2 are preserved. Since we need to use RO for
caling SW W it eC, its contents must be saved.

The main loop of the routine is of the WHI LE variety, with the test at the top.
Thisenables it to cope with lengths of less than or equal to zero. The SUBS
has the dual effect of decreasing the length count by one and setting the flags
for the termination condition. An LDRB is used to obtain the character from
memory, and post-indexing is used to automatically update the addressin
R1.

DIM org 200

sp = 13

link = 14

cr =13 : If = 10
WiteC = 0

FOR pass=0 TO 2 STEP 2
P%-org

[opt pass

1; Exanpl e showing the use of wchS

.test WchS
STMFD (sp)!, {link} ; Save return address
ADR R1, string ; Get address of string
MOV R2, #strEnd-string; Load string |ength
BL wr chS ;Print it
LDMFD (sp)!, {PC} ; Return
.string
EQUS "Test string” ; The string to be printed
EQUB cr
EQUB | f

.strEnd

; Subroutine to print a string addressed by R1
;R2 contains the nunber of bytes in the string
;On exit, Rl points the to byte after the string
; R2 contains -1

;All other registers preserved

.wrchS

STMFD (sp)!, {RO,link} ;Save RO and return address
.wr chsLp

SUBS R2, R2, #1 ; End of string?

LDMM FD(sp)!, {RO, PC} ;Yes, so exit

L DRB RO, [R1], #1 ; Gt a char and inc R1

SW WiteC ;Print this character

B wr chsLp ; Next char

116

Arm Assembly Language programming

NEXT
CALL testWchS

When the LDMM is executed we restore RO and return to the caller, using a

singleinstruction. If we had not stored the link on the stack (aswe did in the

first instruction), an extraMOV pc, | i nk would have been required to
return.

Call-by-reference, or call-by-addressis the term used when parameters are
passed using their addresses instead of their vaues. When high-level
languages use call-by-reference (e.g. var parametersin Pascd), thereis
usually amotive beyond the fact that registers cannot be used to store the
value. Reference parameters are used to enable the called routine to ater
the object whose address is passed. In effect, areference parameter can be
used to pass aresult back, and the address of the result is passed to the
routine in aregister.

Toillustrate the use of reference results, we present below aroutine called
readS. Thisis passed the address of an area of memory in R1. A string of
charactersisread from the keyboard using SW ReadC, and stored at the
given address. The length of the read string is returned in RO.

DIM org 100, buffer 256
WiteC = 0

sp = 13

link = 14

FOR pass=0 TO 2 STEP 2
P%-org

[opt pass

;readS. Reads a string from keyboard to nenory
;addressed by Rl. The string is termnated by the
character

; &D (carriage return) On exit RO contains the length of
;the string, including the CR

;Al'l other registers are preserved

. readS

STMFD (sp)!, {link} ; Save return address
MOV R2, #0 ;Init the length

. readSl p
SW ReadC ;CGet char in RO
TEQ RO, #cr ;Ws it carriage return?
SWNE WiteC ; Echo the character if not
STRB RO, [R1, RZ2] ; Store the char
ADD R2, R2, #1 ;I ncrement the count
BNE readSl p ;1 f not CR | oop

SW NewLi ne :Echo the newl i ne

117

Arm Assembly Language programming

MOV RO, R2 :Return count in RO for USR
LDMFD (sp)!, {PC} ; Return

]

NEXT

BY%=buf f er

PRI NT" Stri ng:

| en%=USR readS

PRI NT"Length was ";len%
PRINT"String was "$buffer

Thistime, a REPEAT-type loop is used because the string will always contain
at least one character, the carriage return. Of course, aroutine such as this
would not be very practical to use: there is no checking for a maximum string
length; no action on specia keyssuch as DELETE or ESCAPE istaken. It
does, however, show how areference parameter might be used to pass the
address of a variable which isto be updated by the routine.

Parameter blocks

A parameter block, or control block, is closely related to reference
parameters. When we pass a parameter block to aroutine, we giveit the
address of an area of memory in which it may find one or more parameters.
For example, suppose we wrote a routine to save an area of memory as a
named file on the disk drive. Severa parameters would be required:

Name of thefile on the disk

Start address of data

End address (or length) of data

Load address of data

Execution address (in case it is aprogram)
Attributes (read, write etc.)

Now, all of theseitems may be passed in registers. If we assume the nameis
passed by address and has some delimiting character on the end, six
registerswould be required. Alternatively, the information could be passed
in a parameter block, the start address of which is passed in asingle register.
Thefile save routine could access the component parts of the block using, for
example

LDR [base, #of f set]

where base is the register used to pass the start address, and of f set isthe
address of the desired word relative to base.

Asthe address of the parameter block is passed to the routinethe
parameters may be altered as well asread. Thus parameter blocks are
effectively reference parameters which may be used to return information in

118

Arm Assembly Language programming

addition to passing it. For example, the parameter block set up for a disk
load operation could have its entries updated from the data stored for the
filein thedisk catalog (load address, length etc.)

Parameter blocks are perhaps less useful on machines with generous register
sets like the ARM than on processors which are less well-endowed, e.g. 8-bit
micros such as the 6502. However, you should remember the advantage of
only one register being needed to pass severd parameters, and be ready to
use the technique if appropriate.

Stack parameters

Thefina parameter passing technique which we will describe usesthe stack
to store arguments and results. In chapter three we described the LDMand
STMinstructions, for which the main use is dealing with a stack-type
structure. Information is pushed on to a stack using STMand pulled from it
using LDM We have already seen how these instructions are used to
preserve the return address and other registers.

To pass parameters on the stack, the caller must push them just before
caling theroutine. It must also make room for any results which it expects
to be returned on the stack. The example below calls a routine which expects
to find two arguments on the stack, and returns asingle result. All items are
assumed to occupy asingle word.

; St ackEg. This shows how the stack m ght be used

;to pass argunments and receive results from a stack.

; Before entry, two argunents are pushed, and on exit a
;single result replaces them

. stackEg
STMFD (sp)!,{RO,R1} ;Save the argunents
BL stackSub ;Call the routine
LDMFD (sp)!, {RO} ;Get the result
ADD Sp, sp, #8 ;' Lose' the argunents
.stackSub

LDMFD (sp)!,{R4,R5} ;Get the argunents
Ce ;Do sonme processing

STMFD (sp)!, {R2} ; Save the result
MOV pc, link ; Return

Looking at this code, you may think to yourself ‘what awaste of time.' As
soon as one routine pushes a value, the other pullsit again. It would seem
much more sensble to smply pass the valuesin registersin thefirst place.
Notice, though, that when st ackSub is caled, the registers used to set-up
the stack are different from those which are loaded inside the routine. This

119

Arm Assembly Language programming

Is one of the advantages of stacked parameters: al the caller and call ee need
to know isthe size, number and order of the parameters, not (explicitly)
where they are stored.

In practice, itisrareto find the stack being used for parameter pass ng by
pure assembly language programs, as it is straightforward to allocate
particular registers. Where the stack scheme finds more useisin compiled
high-level language procedures. Some languages, such as C, allow the
programmer to assume that the arguments to a procedure can be accessed in
contiguous memory locations. Moreover, many high-level languages allow
recursive procedures, i.e. procedures which call themselves. Since acopy of
the parameters isrequired for each invocation of a procedure, the stack isan
obvious place to store them. See the Acorn ARM Calling Standard for an
explanation of how high-level languages use the stack.

Although the stack is not often used to pass parameters in assembly
language programs, subroutines frequently save registersin order to
preserve their values across calls to the routine. We have already seen how
the link register (and possibly others) may be saved using STMat the start of
aprocedure, and restored by LDMat the exit. To further illustrate this
technique, the program below shows how arecurs ve procedure might use
the stack to store parameters across invocations.

The technique illustrated is very similar to the way parameters (and loca
variables) work in BBC BASIC. All variables are actualy global. When a
procedure with thefirst line

DEF PROCeg(i nt %

is called using the statement PROCeg(42) , the following happens. The
vaue of i nt %is saved on the stack. Theni nt %is assigned the value 42,
and thisisthe valueit has throughout the procedure. When the procedure
returns using ENDPRQOC, the previous value of i nt %is pulled from the stack,
restoring its old value.

The assembly language equivaent of this method is to pass parametersin
registers. Just before a subroutineis caled, registers which have to be
preserved across the call are pushed, and then the parameter registers are
set-up. When the routine exits, the saved registers are pulled from the stack.

There are several routines which are commonly used to illustrate recursion.
The one used hereis suitable because of its simplicity; the problem to be
solved does not get in the way of showing how recursonisused. The
Fibonacci sequence is a series of numbersthus:

120

Arm Assembly Language programming

0,1,123,5,8,13,21, 34,

where each number is the sum of its two predecessors. It can be expressed

mathematically in terms of some functions.

f(0)=0
f()=1
f(n) = f(n-2) + f(n-1)

where f(n) means the nth number in the sequence starting from zero. It can

easily be translated into a BASIC function:
DEF FNfib(n) IF n<=1 THEN =n ELSE =FNfib(n-2)+FNfib(n-1)

To convert thisinto ARM assembler, wewill assumethat the number n is
passed in R1 and the result fib(n) returned in RO.

DIM org 200

i nk=14

sp=13

FOR pass=0 TO 2 STEP 2
P%-or g

[opt pass

; Fi bonacci routine to return fib(n)

;On entry, Rl contains n

;On exit, RO contains fib(n), Rl preserved, R2 corrupt

fib
CMP R1, #1 ;See if it's an easy case
MOVLE RO, R1 ;Yes, so return it in RO
MOVLE PC, i nk ; And return
STMFD (sp)!,{link} ;Save return address
SUB R1, R1, #2 ;Get fib(n-2) in RO
BL fib
STMFD (sp)!, {RO} ;Save it on the stack
ADD R1, R1, #1 ;Get fib(n-1) in RO
BL fib
LDMFD (sp)!, {R2} ;Pull fib(n-2)
ADD RO, RO, R2 ;Add fib(n-2) and fib(n-1) in RO
ADD R1, R1, #1 ; Restore R1 to entry value
LDMFD (sp)!, {PC} ; Return

]

NEXT

FOR B%*0 TO 25

PRINT "Fib(";B%) is ";USR fib
NEXT B%

The routine does not use the stack in exactly the same way as BBC BASIC,
but the saving of intermediate results on the stack enablesf i b to be called

recursively inthe sasmeway. Notethat it isimportant that onreturnR1is

121

Arm Assembly Language programming

preserved, i.e. contains n, as specified in the comments. Thisis because
whenever f i b iscalled recursively the caller expects R1 to be |eft intact so
that it can calcul ate the next value correctly. In the caseswhen R1=0or 1 on
entry it isclearly preserved; in the other cases, by observation R1 is changed
by -2, +1 and +1, i.e. there is no net changein its value.

Y ou should note that, like alot of routines that are expressed e egantly using
recursion, this Fibonacci program becomes very inefficient of time and stack
space for quite small values of n. Thisis due to the number of recursive cals
made. (For an exercise you could draw a'tree' of the calls for some start
value, say 6.) A better solution isacounting loop. Thisisexpressed in BASIC
and ARM assembler below.

DEF FNfi b(n)
IF n <= 1 THEN =n
LOCAL f1,f2
f2=0 : f1 =1

FOR i=0 TO n-2
fl1 = f1+4f2
f2 = f1-f2
NEXT i
= f1
DIM org 200
i =2 : REM Work registers
fi =3
f2 =4
sp = 13
link = 14
FOR pass=0 TO 2 STEP 2
P%-org

[opt pass

;fib - wusing iteration instead of recursion
;On entry, RL = n
;On exit, RO = fib(n)

.fib

CMP R1, #1 Trivial test first

MOVLE RO, R1

MOVLE PC, |ink

STMFD (sp)!,{i,f1,f2,1ink} ;Save work registers and
i nk

MOV f1,#1 ;Initialise fib(n-1)

MOV f2,#0 ;and fib(n-2)

SuUB i, R1, #2 ; Set-up | oop count
.fibLp

ADD f1,f1,f2 ;Do cal cul ation

SUB f2,f1,f2

SUBS i, 1

] 1#
BPL fibLp ;Until i reaches -1

122

Arm Assembly Language programming

MOV RO, f 1 ;Return result in RO
LDMFD (sp)!,{i,f1,f2,PC}; Restore and return

NEXT pass
FOR B%0 TO 25

PRINT"Fib(";B%") is ";USR fib
NEXT B%

Summary

The main thrust of this chapter has been to show how some of the familiar
concepts of high-level languages can be applied to assembler. Most control
structures are easly implemented in terms of branches, though more
complex ones (such as multi-way branching) can require dightly more work.
Thisisespecially trueif the code isto exhibit the desrable property of
position-indepence.

We also saw how parameters may be passed between routines - in registers,
on the stack, or in parameter blocks. Using the stack has the advantage of
allowing recursion, but isless efficient than passng information in registers.

123

