
Arm Assembly Language programming

5. Assembly
programming
principles
The previous chapters have covered the ARM instruction set, and using the
ARM assembler. Now we are in a position to start programming properly.
Since we are assuming you can program in BASIC, most of this chapter can
be viewed as a conversion course.  It illustrates with examples how the
programming techniques that you use when writing in a high-level language
translate into assembler.

5.1 Control  structures
Some theory
A program is made up of instructions which implement the solution to a
problem.  Any such solution, or algorithm, may be expressed in terms of a
few fundamental concepts.  Two of the most important are program
decomposition and flow of control.

The composition of a program relates to how it is split into smaller units
which solve a particular part of the problem.  When combined, these units, or
sub-programs, form a solution to the problem as a whole.  In high-level
languages such as BASIC and Pascal, the procedure mechanism allows the
practical decomposition of programs into smaller, more manageable units.
Down at the assembly language level, subroutines perform the same
function.

Flow of control in a program is the order in which the instructions are
executed.  The three important types of control structure that have been
identified are: the sequence, iteration, and decision.

An instruction sequence is simply the act of executing instructions one after
another in the order in which they appear in the program.  On the ARM, this
action is a consequence of the PC being incremented after each instruction,
unless it is changed explicitly.
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The second type of control flow is decision: the ability to execute a sequence
of instructions only if a certain condition holds (e.g. I F…THEN…).  Extensions
of this are the ability to take two separate, mutually exclusive paths
(I F...THEN...ELSE...), and a multi-way decision based on some value
(ON...PROC...).  All of these structures are available to the assembly language
programmer, but he has to be more explicit about his intentions.

Iteration means looping.  Executing the same set of instructions over and
over again is one of the computer's fortes.  High-level languages provide
constructs such as REPEAT..UNTI L and FOR...NEXT to implement iteration.
Again, in assembler you have to spell out the desired action a little more
explicitly, using backward (perhaps conditional) branches.

Some pract ice
Having talked about program structures in a fairly abstract way, we now
look at some concrete examples.  Because we are assuming you have some
knowledge of BASIC, or similar high-level language, the structures found
therein will be used as a starting point.  We will present faithful copies of
I F...THEN...ELSE, FOR...NEXT etc. using ARM assembler.  However, one of
the advantages of using assembly language is its versatility; you shouldn't
restrict yourself to slavishly mimicking the techniques you use in BASIC, if
some other more appropriate method suggests itself.

Posit ion-independence
Some of the examples below (for example the ON...PROC implementation
using a branch table) may seem slightly more complex than necessary.  In
particular, addressing of data and routines is performed not by loading
addresses into registers, but by performing a calculation (usually 'hidden' in
an ADR directive) to obtain the same address.  This seemingly needless
complexity is due to a desire to make the programs position-independent.

Position-independent code has the property that it will execute correctly no
matter where in memory it is loaded.  In order to possess this property, the
code must contain no references to absolute objects.  That is, any internal
data or routines accessed must be referenced with respect to some fixed
point in the program.  As the offset from the required location to the fixed
point remains constant, the address of the object may be calculated
regardless of where the program was loaded.    Usually, addresses are
calculated with respect to the current instruction.  You would often see
instructions of the form:

. h e r e ADD pt r ,  pc ,  #obj ec t - ( her e+8)
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to obtain the address of obj ect  in the register pt r .  The +8 part occurs
because the PC is always two instructions (8 bytes) further on than the
instruction which is executing,  due to pipelining.

 It is because of the frequency with which this calculation crops up that the
ADR directive is provided. As we explained in Chapter Four, the line above
could be written:

ADR pt r ,  obj ec t

There is no need for a label: BASIC performs the calculation using the
current value of P%.

Instead of using PC offsets, a program can also access its data using base-
relative addressing.  In this scheme, a register is chosen to store the base
address of the program's data.  It is initialised in some position-independent
way at the start of the program, then all data accesses are relative to this.
The ARM's register-offset address mode in LDR and STR make this quite a
straightforward way of accessing data.

Why strive for position-independence?  In a typical ARM system, the
programs you write will be loaded into RAM, and may have to share that
RAM with other programs.  The operating system will find a suitable
location for the program and load it there.  As 'there' might be anywhere in
the available memory range, your program can make no assumptions about
the location of its internal routines and data.  Thus all references must be
relative to the PC.  It is for this reason that branches use offsets instead of
absolute addresses, and that the assembler provides the

L DR <des t >, <e x pr es s i on >

form of LDR and STR to automatically form PC-relative addresses.

Many microprocessors (especially the older, eight-bit ones) make it
impossible to write position-independent code because of unsuitable
instructions and architectures.   The ARM makes it relatively easy, and you
should take advantage of this.

Of course, there are bound to be some absolute references in the program.
You may have to call external subroutines in the operating system.  The
usual way of doing this is to use a SWI , which implicitly calls absolute
address &0000008.  Pointers handed to the program by memory-allocation
routines will be absolute, but as they are external to the program, this
doesn't matter.  The thing to avoid is absolute references to internal objects.
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Sequences
These barely warrant a mention.  As we have already implied, ARM
instructions execute sequentially unless the processor is instructed to do
otherwise.  Sequence of high-level assignments:

LET a = b+c
LET d = b- c

would be implemented by a similar sequence of ARM instructions:

ADD r a,  r b,  r c
SUB r d,  r b,  r c

IF-type condit ions
Consider the BASIC statement:

I F a=b THEN count =count +1

This maps quite well into the following ARM sequence:

CMP r a,  r b
 ADDEQ count ,  count ,  #1

In this and other examples, we will assume operands are in registers to
avoid lots of LDRs and STRs.  In practice, you may find a certain amount of
processor-to-memory transfer has to be made.

The ARM's ability to execute any instruction conditionally enables us to
make a straightforward conversion from BASIC.  Similarly, a simple
I F..THEN...ELSE such as this one

I F val <0 THEN si gn=- 1 ELSE s i gn=1

leads to the ARM equivalent:

TEQ val ,  #0
MVNMI s i gn,  #0
MOVPL s i gn,  #1

The opposite conditions (MI  and PL) on the two instructions make them
mutually exclusive (i.e. one and only  one of them will be executed after the
TEQ), corresponding to the same property in the THEN and ELSE parts of
the BASIC statement.

There is usually a practical limit to how many instructions may be executed
conditionally in one sequence.  For example, one of the conditional
instructions may itself affect the flags, so the original condition no longer
holds.   A multi-word ADD will need to affect the carry flag, so this operation
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couldn't be performed using conditional execution.  The solution (and the
only method that most processors can use) is to conditionally branch over
unwanted instructions.

Below is an example of a two-word add which executes only if R0=R1:

CMP R0,  R1
 BNE no Ad d
 ADDS l o1,  l o1,  l o2
 ADC hi 1,  hi 1,  hi 2
 . noAdd . . . .

Notice that the condition used in the branch is the opposite to that under
which the ADD is to be performed.  Here is the general translation of the
BASIC statements:

I F cond THEN sequence1 ELSE sequence2 s t at ement

; ' ARM'  ver s i on
; Obt ai n  <cond>

 B<NOT cond>  seq2 ; I f  <cond> f ai l s t hen j ump t o ELSE
 s e quen c e1 ; Ot her wi se do t he THEN par t
 . . .
  BAL end Seq 2 ; Ski p over  t he ELSE par t
. s e q2

s e quen c e2 ; Thi s  get s  execut ed i f  <cond> f ai l s
 . . .
. e ndSe q2

s t at ement ; The pat hs  r e- j oi n her e

At the end of the THEN sequence is an unconditional branch to skip the ELSE
part.  The two paths rejoin at endSeq2.

It is informative to consider the relative timings of skipped instructions and
conditionally executed ones.  Suppose the conditional sequence consists of X
group one instructions.  The table below gives the timings in cycles for the
cases when they are executed and not executed, using each method:

Branch Conditional
Executed s + Xs Xs

Not executed 2n+s Xs

In the case where the instructions are executed, the branch method has to
execute the un-executed branch, giving an extra cycle.  This gives us the
rather predictable result that if the conditional sequence is only one
instruction, the conditional execution method should always be used.
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When the sequence is skipped because the condition is false, the branch
method takes 2n+s, or the equivalent to 5s cycles.  The conditional branch
method takes one s cycles for each un-executed instruction.  So, if there are
four or fewer instructions, at least one cycle is saved using conditional
instructions.  Of course, whether this makes the program execute any faster
depends on the ratio between failures and successes of the condition.

Before we leave the I F-type constructions, we present a nice way of
implementing conditions such as:

I F a=1 OR a=5 OR a=12. . .

It uses conditional execution:

TEQ a, # 1
TEQNE a, # 5
TEQNE a, #1 2
BNE f a i l e d

If the first TEQ gives an EQ result (i.e. a=1), the next two instructions are
skipped and the sequence ends with the desired flag state.  If a<>1, the next
TEQ is executed, and again if this gives an EQ result, the last instruction is
skipped.  If neither of those two succeed, the result of the whole sequence
comes from the final TEQ.

Another useful property of TEQ is that it can be used to test the sign and zero-
ness of a register in one instruction.  So a three-way decision could be made
according to whether an operand was less than zero, equal to zero, or
greater than zero:

TEQ R0 , # 0
BMI n e g
BEQ z e r o
BPL pl u s

In this example, one of three labels is jumped to according to the sign of R0.
Note that the last instruction could be an unconditional branch, as PL must
be true if we've got that far.

The sequence below performs the BASIC assignment a=ABS( a)  using
conditional instructions:

TEQ a,  #0
RSBMI a,  #0 ; i f  a<0 t hen a=0- a

As you have probably realised, conditional instructions allow the elegant
expression of many simple types of I F...  construct.
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Multi -way branches
Often, a program needs to take one of several possible actions, depending
on a value or a condition.  There are two main ways of implementing such a
branch, depending on the tests made.

If the action to be taken depends on one of a few specific conditions, it is best
implemented using explicit comparisons and branches.  For example,
suppose we wanted to take one of three actions depending on whether the
character in the lowest byte of R0 was a letter, a digit or some other
character.  Assuming that the character set being used is ASCII, then this can
be achieved thus:

CMP R0, #ASC" 0 " ; Less  t han t he l owes t  di gi t ?
BCC doOt he r ; Yes ,  so must  be ' ot her '
CMP R0, #ASC" 9 " ; I s  i t  a di gi t ?
BL S doDi g i t ; Ye s
CMP R0, #ASC" A" ; Bet ween di gi t s  and upper  case?
BCC doOt he r ; Yes ,  so ' ot her '
CMP R0, #ASC" Z" ; I s i t  upper  case?
BL S doLe t t e r ; Ye s
CMP R0, #ASC" a " ; Bet ween upper  and l ower  case?
BL T doOt he r ; Yes ,  so ' ot her '
CMP R0, #ASC" z " ; Lower  c ase?
BHI doOt he r ; No,  so ' ot her '

. d oLet t er
 . . . .

B nex t Cha r ; Pr ocess  nex t  char ac t er
. d oDi g i t
 . . . .

B nex t Cha r ; Pr ocess  nex t  char ac t er
. d oOt h er
 . . . .
. n ex t Char
 . . . .

Note that by the time the character has been sorted out, the flow of control
has been divided into three possible routes.  To make the program easier to
follow, the three destination labels should be close to each other.  It is very
possible that after each routine has done its job, the three paths will
converge again into a single thread.  To make this clear, each routine is
terminated by a commented branch to the meeting point.

A common requirement is to branch to a given routine according to a range
of values.  This is typified by BASIC's ON. . . PROC and CASE statements.
For example:

ON x  PROCadd, PROCdel et e, PROCamend, PROCl i s t  ELSE PROCer r or
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According to whether x  has the value 1, 2, 3 or 4, one of the four procedures
listed is executed.  The ELSE...  part allows for x  containing a value outside
of the expected range.

One way of implementing an ON...  type structure in assembly language is
using repeated comparisons:

CMP choi ce,  #1 ; Check  agai ns t  l ower  l i mi t
BCC e r r or ; Lower ,  so er r or
BEQ a d d ; choi ce = 1 so add
CMP choi ce,  #3 ; Check  f or  2 or  3
BL T de l e t e ; choi ce = 2 so del et e
BEQ a me nd ; choi ce = 3 so amend
CMP choi ce,  #4 ; Check  agai ns t  upper  l i mi t
BEQ l i s t ; I f  choi ce = 4 l i s t  el se er r or

. e r r or
. . . . .

Although this technique is fine for small ranges, it becomes large and slow
for wide ranges of choi ce.  A better technique in this case it to use a branch
table.  A list of branches to the routines is stored near the program, and this
is used to branch to the appropriate routine.  Below is an implementation of
the previous example using this technique.

 DI M or g 200
 choi ce = 0
 t  = 1
 sp = 13
 l i nk  = 14

 REM Range of  l egal  val ues
 mi n = 1
 max = 4
 Wr i t eS = 1
 NewLi ne = 3
 FOR pass=0 TO 2 STEP 2
 P%=or g
 [  opt  pass
 ; Mul t i way br anch i n ARM assembl er
 ; choi ce cont ai ns  code,  mi n. . max  of  r out i ne t o cal l
 ; I f  out  of  r ange,  er r or  i s  cal l ed
 ;
 STMFD ( s p) ! , { t , l i nk }
 SUBS choi ce,  choi ce,  #mi n ; Choi c e <mi n?
 BCC er r o r ; Yes ,  so er r or
 CMP choi ce,  #max - mi n ; Choi c e >max ?
 BHI er r o r ; Yes ,  so er r or
 ADR l i nk ,  r et ur n ; Set - up r et ur n addr ess
 ADR t , t ab l e ; Get  addr ess  of  t abl e base
 ADD PC,  t ,  choi ce,  LSL #2 ; Jump t o t abl e+choi ce* 4
 ;
 . er r or
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 SWI Wr i t e S
 EQUS " Range er r or "
 EQUB 0
 ALI GN
 ;
 . r et ur n
 SWI NewLi n e
 L DMFD ( s p) ! , { t , PC}
 ;
 ;
 ; Tabl e of  br anches  t o r out i nes
 . t abl e
 B a d d
 B del et e
 B amen d
 B l i s t
 ;
 . add
 SWI Wr i t e S
 EQUS " Add command"
 EQUB 0
 ALI GN
 MOV PC, l i n k
 ;
 . del et e
 SWI Wr i t e S
 EQUS " Del et e command"
 EQUB 0
 ALI GN
 MOV PC, l i n k
 ;
 . amend
 SWI Wr i t e S
 EQUS " Amend command"
 EQUB 0
 ALI GN
 MOV PC, l i n k
 ;
 . l i s t
 SWI Wr i t e S
 EQUS " Li s t  command"
 EQUB 0
 ALI GN
 MOV PC, l i n k
 ]
 NEXT
 REPEAT
   I NPUT " Choi ce " , A%
   CALLor g
 UNTI L FALSE

The first four lines check the range of the value in choi ce, and call er r or
if it is outside of the range mi n to max .  It is important to do this, otherwise
a branch might be made to an invalid entry in the branch table.  The first test
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uses SUBS instead of CMP, so choice is adjusted to the range 0 to max- mi n
instead of mi n to max .

Next, the return address is placed in R14. The routines add, del et e etc.
return as if they had been called using BL, i.e. use a return address in R14.
To do this, we use ADR to place the address of the label r et ur n into R14,
this being where we want to resume execution.

The next ADR obtains the base address of the jump table in the register t .
Finally, the ADD multiplies choi ce by 4 (using two left shifts) and adds this
offset to the table's base address. The result of the addition is placed in the
program counter. This causes execution to jump to the  branch instruction in
the table that was denoted by choi ce. From there, the appropriate routine
is called, with the return address still in R14.

As we mentioned in the position-independent code section, this may seem a
little bit involved just to jump to one of four locations.  Remember though
that the technique will work for an arbitrary number of entries in the table,
and will work at whatever address the program is loaded.

Loops
Looping is vital to any non-trivial program.  Many problems have solutions
that are expressed in an iterative fashion.  There are two important classes
of looping construct.  The first is looping while, or until, a given condition is
met (e.g. REPEAT and WHI LE loops in BASIC).  The second is looping for a
given number of iterations (e.g. FOR loops).  In fact, the second class is really
a special case of the general conditional loop, the condition being that the
loop has iterated the correct number of times.

An important characteristic of any looping construct is where the test of the
looping condition is made.  In BASIC REPEAT loops, for example, the test is
made at the corresponding UNTI L.  This means that the instructions in the
loop are always executed at least once.  Consider this example:

REPEAT
 I F a>b THEN a=a- b ELSE b=b- a
UNTI L a=b

This is a simple way to find the greatest common divisor (GCD) of a and b.
If a=b (and a<>0) when the loop is entered, the result is an infinite loop as
on the first iteration b=b- a will be executed, setting b to 0.  From then on,
a=a- 0 will be executed, which will never make a=b.

The WHI LE loop tests the condition at the 'top', before its statements have
been executed at all:
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WHI LE a<>b 
I F a>b THEN a=a- b ELSE b=b- a

ENDWHI LE

This time, if a=b, the condition at the top will fail, so the loop will never be
executed, leaving a=b=GCD(a,b).

Below are the two ARM equivalents of the REPEAT and WHI LE loop
versions of the GCD routine:

; Fi nd t he GCD of  r a, r b.
; Fal l i bl e ver s i on us i ng ' r epeat '  l oop
. r epe at

CMP r a , r b ; REPEAT I F a>b
 SUBGT r a, r a, r b ; THEN a=a- b
 SUBLE r b, r b, r a ; ELSE b=b- a
 CMP r a , r b ; UNTI L
 BNE r ep ea t ; a=b 
;
; Fi nd GCD of  r a, r b,  us i ng ' whi l e'  l oop 
. whi l e

CMP r a , r b ; WHI LE a<>b
 BNE endwhi l e
 SUBGT r a, r a, r b ; I F a>b THEN a=a- b 

SUBLE r b, r b, r a ; ELSE b=b- a
 B wh i l e ; ENDWHI LE
. e ndwh i l e

Notice that the difference between the two is that the WHI LE requires a
forward branch to skip the instructions in the body of the loop.  This is not a
problem for an assembler, which has to cope with forward references to be
of any use at all.  In an interpreted language like BASIC, though, the need to
scan through a program looking for a matching ENDWHI LE is something of
a burden, which is why some BASIC's don't have such structures.

Because both of the code sequences above are direct translations of high-
level versions, they are indicative of what we might expect a good compiler
to produce.  However, we are better than any compiler, and can optimise
both sequences slightly by a bit of observation.  In the first loop, we branch
back to an instruction which we have just executed, wasting a little time.  In
the second case, we can use the conditional instructions to eliminate the first
branch entirely.  Here are the hand-coded versions:

; Fal l i bl e ver s i on us i ng ' r epeat '  
CMP r a , r b ; REPEAT I F a>b 

. r epe at
SUBGT r a, r a, r b ; THEN a=a- b 
SUBLE r b, r b, r a ; ELSE b=b- a

 CMP r a , r b ; UNTI L
 BNE r ep ea t ; a=b 
 ;
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; Fi nd GCD of  r a, r b,  us i ng ' whi l e'  l oop
. whi l e

CMP r a , r b ; REPEAT
 SUBGT r a, r a, r b ; I F a>b THEN a=a- b
 SUBLT r b, r b, r a ; ELSE I F a<b b=b- a
 BNE wh i l e ; UNTI L a=b endwhi l e

By optimising, we have converted the WHI LE loop into a REPEAT loop with
a slightly different body.

In general, a REPEAT-type structure is used when the processing in the
'body' of the loop will be needed at least once, whereas WHI LE-type loops
have to be used in situations where the 'null' case is  a distinct possibility.
For example, string handling routines in the BASIC interpreter have to deal
with zero-length strings, which often means a WHI LE looping structure is
used.  (See the string-handling examples later.)

A common special case of the REPEAT loop is the infinite loop, expressed as:

REPEAT 
REM do somet hi ng

UNTI L FALSE

or in ARM assembler:

. l o op
; do somet hi ng

BAL l oo p

Programs which exhibit this behaviour are often interactive ones which take
an arbitrary amount of input from the user.  Again the BASIC interpreter is a
good example.  The exit from such programs is usually through some 'back
door' method (e.g. call ing another program) rather than some well-defined
condition.

Since FOR loops are a special case of general loops, they can be expressed in
terms of them.  The FOR loop in BBC BASIC exhibits a REPEAT-l ike
behaviour, in that the test for termination is performed at the end, and it
executes at least once.  Below is a typical FOR loop and its REPEAT
equivalent:

REM A t ypi cal  f or  l oop 
FOR ch=32 TO 126 

VDU ch
NEXT ch

REM REPEAT l oop equi val ent
c h =32
REPEAT
     VDU ch
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c h =c h +1
UNTI L ch>126

The initial assignment is placed just before the REPEAT.  The body of the
REPEAT is the same as that for the FOR, with the addition of the
incrementing of ch just before the condition.  The condition is that ch is
greater than the limit given in the FOR statement.

We can code the FOR loop in ARM assembler by working from the REPEAT
loop version:

; Pr i nt  char ac t er s  32. . 126 us i ng a FOR l oop- t ype cons t r uc t
; R0 hol ds  t he char ac t er

MOV R0,  #32 ; I ni t  t he char ac t er
. l o op

SWI Wr i t e C ; Pr i nt  i t
ADD R0,  R0,  #1 ; I nc r ement  i t
CMP R0,  #126 ; Check  t he l i mi t
BL E l o o p ; Loop i f  not  f i ni shed

;

Very often, we want to do something a fixed number of times, which could
be expressed as a loop beginning FOR i =1 TO n...  in BASIC.  When such
loops are encountered in assembler, we can use the fact that zero results of
group one instructions can be made to set the Z flag.  In such cases, the
updating of the looping variable and the test for termination can be
combined into one instruction.

For example, to print ten stars on the screen:

FOR i =1 TO 10
PRI NT " * " ;

NEXT i

could be re-coded in the form:

; Pr i nt  t en st ar s on t he sc r een
; R0 hol ds t he s t ar  char act er ,  R1 t he count

MOV R0, #ASC" * " ; I ni t  char  t o pr i nt
MOV R1, #1 0 ; I ni t  count

. l o op
SWI Wr i t e C ; Pr i nt  a st ar
SUBS R1, R1, # 1 ; Ne x t
BNE l o o p

;

The SUBS will set the Z flag after the tenth time around the loop (i.e. when
R1 reaches 0), so we do not have to make an explicit test.
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Of course, if the looping variable's current value was used in the body of the
loop, this method could not be used (unless the loop was of the form FOR
i =n TO 1 STEP - 1...) as we are counting down from the limit, instead of
up from 1.

Some high-level languages provide means of repeating a loop before the
end or exiting from the current loop prematurely.  These two looping
'extras' are typified by the cont i nue and br eak  statements in the C
language.  Cont i nue causes a jump to be made to just after the last
statement inside the current FOR, WHI LE or REPEAT-type loop, and br eak
does a jump to the first statement after the current loop.

Because cont i nue and br eak  cause the flow of control to diverge from
the expected action of a loop, they can make the program harder to follow
and understand.  They are usually only used to 'escape' from some
infrequent or error condition.  Both constructs may be implemented in ARM
using conditional or unconditional branches.

5.2 Subroutines and procedures
We have now covered the main control flow structures.  Programs written
using just these constructs would be very large and hard to read.  The
sequence, decision and loop constructs help to produce an ordered solution
to a given problem.  However, they do not contribute to the division of the
problem into smaller, more manageable units.  This is where subroutines
come in.

Even the most straightforward of problems that one is likely to use
computer to solve can be decomposed into a set of simpler, shorter sub-
programs.  The motivations for performing this decomposition are several.
Humans can only take in so much information at once.  In terms of
programming, a page of l isting is a useful limit to how much a programmer
can reasonably be expected to digest in one go.  Also, by implementing the
solution to a small part of a problem, you may be writing the same part of a
later program.  It is surprising how much may be accomplished using
existing 'library' routines, without having to re-invent the wheel every time.

The topics of program decomposition and top-down, structured
programming are worthy of books in their own right, and it is recommended
that you consult these if you wish to write good programs in any language.
The discipline of structured programming is even more important in
assembler than in, say, Pascal, because it is  easier to write treacherously
unreadable code in assembler.
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A minimal decomposition of most programs is shown in the block diagram
overleaf. Data is taken in, processed in some way, then results output.  If
you think about it, most programs would be rather boring if they depended
on absolutely no external stimulus for their results.

Once the input, processing and output stages have been identified, work can
begin on solving these individual parts.  Almost invariably this will involve
further decomposition, until eventually a set of routines will be obtained
which can be written directly in a suitably small number of basic instructions.

The way in which these routines are linked together, and how they
communicate with each other, are the subjects of the next sections.

A minimal  usefu l program

Branch and link
The ARM BL instruction is a subroutine-calling primitive.  Primitive in this
context means an operation which is implemented at the lowest level, with
no more hidden detail.

Recall from Chapter Three that BL causes a branch to a given address, and
stores the return address in R14.  We will i llustrate the use of BL to call the
three routines which solve a very simple problem.  This may be expressed as
follows: repeatedly read a single character from the keyboard and if it is not
the NUL character (ASCII code 0), print the number of 1 bits in the code.

For comparison, the BASIC program below solves the problem using exactly
the same structure as the following ARM version:

I NPUT

PROCESSI NG

OUTPUT
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REPEAT ch = FNr eadChar
I F c h<>0 PROCout put ( FNpr ocess ( c h) )

UNTI L c h=0
END
REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
DEF FNr eadChar =GET
REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
DEF FNp r oc es s ( c h)

LOCAL count
c o unt =0
REPEAT

count =count  + ch MOD 2
ch=ch DI V 2

UNTI L ch=0
=c ou nt
REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
DEF PROCout put ( num)

PRI NT num
ENDPROC

There are four entities, separated by the lines of asterisks.  At the top is the
'main program'.  This is at the highest level and is autonomous: no other
routine calls the program.  The next three sections are the routines which the
main program uses to solve the problem.  As this is a fairly trivial example,
none of the subroutines calls any other; they are all made from primitive
instructions.  Usually (and especially in assembly language where primitives
are just that), these 'second level' routines would call even simpler ones, and
so on.

Below is the listing of the ARM assembler version of the program:

 DI M or g 200
 sp = 13
 l i nk  = 14
 REM SWI  number s
 Wr i t eC = 0
 NewLi ne = 3
 ReadC = 4
 FOR pass=0 TO 2 STEP 2
 P%=or g
 [  opt  pass
 ; Read char act er s  and pr i nt  t he number  of  1 bi t s  i n t he
 ; ASCI I  code,  as  l ong as  t he code i sn' t  zer o.
 STMFD ( s p) ! , { l i nk } ;  Save r et ur n addr ess
 . r epeat
 BL r ead Cha r ; Get  a char ac t er  i n R0
 CMP R0 , # 0 ; I s i t  zer o?
 LDMEQFD( s p) ! , { PC} ; Yes ,  so r et ur n t o cal l er
 BL pr o c es s ; Get  t he count  i n R1
 BL out pu t ; Pr i nt  R1 as  a di gi t
 B r ep ea t ; Do i t  agai n
 ;
 ;
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 ; r eadChar  -  Thi s r et ur ns  a char act er  i n R0
 ; Al l  ot her  r egi s t er s  pr eser ved
 ;
 . r eadChar
 SWI Re ad C ; Cal l  t he OS f or  t he r ead
 MOV PC,  l i nk ; Ret ur n us i ng R14
 ;
 ; pr ocess -  Thi s  count s t he number  of  1s  i n R0 bi t s 0. . 7
 ; I t  r et ur ns  t he r esul t  i n R1
 ; On ex i t ,  R1=count ,  R0=0,  al l  ot her s  pr eser ved
 ;
 . pr ocess
 AND R0,  R0,  #&FF ; Zer o bi t s 8. . 31 of  R0
 MOV R1,  #0 ; I ni t  t he bi t  count
 . pr ocLoop
 MOVS R0,  R0,  LSR #1; DI V 2 and get  MOD 2 i n car r y
 ADC R1,  R1,  #0 ; Add car r y  t o count
 BNE pr oc Loo p ; Mor e t o do
 MOV PC,  l i nk ; Ret ur n wi t h R1=count
 ;
 ; out put  -  pr i nt  R1 as  a s i ngl e di gi t
 ; On exi t ,  R0=R1 + " 0" ,  al l  ot her s  pr eser ved
 ;
 . out put
 ADD R0,  R1, #ASC" 0" ; Conver t  R1 t o ASCI I  i n R0
 SWI Wr i t e C ; Pr i nt  t he di gi t
 SWI NewLi n e ; And a newl i ne
 MOV PC,  l i nk ; Ret u r n
]
 NEXT
 CALL or g

Because of the way in which the program closely follows the BASIC version,
you should not have much difficulty following it.  Here are some points to
note.  In the BASIC version, two of the subroutines, pr ocess  and
r eadChar , are functions and pr i nt  is a procedure.  In the ARM version,
there is no such obvious distinction in the way the routines are called.
However, the fact that pr ocess  and r eadChar  return values to their
caller makes them equivalent to function, whereas process, which returns no
value of use to the caller, is a procedure equivalent.

At the start of each routine is a short description of what it does and how it
affects the registers.  Such documentation is the bare minimum that you
should provide when writing a routine, so that problems such as registers
being changed unexpectedly are easier to track down.  In order to do this
when the operating system routines are used (e.g. the SWI  Wr i t eC call),
you have to know how those routines affect the registers.  This information
should be provided in the system documentation.  For now, we assume that
no registers are altered except those in which results are returned, e.g. R0 in
SWI  ReadC.
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In the routine pr ocess  we use the ability to (a) set the C flag from the
result of shifting an <r hs> operand, and (b) preserve the state of the Z flag
over the ADC by not specifying the S option.  This enables us to write an
efficient three-instruction version of the BASIC loop.

The routine out put  assumes that the codes of the digit symbols run
contiguously from 0, 1, ...9.  Using this assumption it is a simple matter to
convert the binary number 1..8 (remember &00 will never have its 1 bits
counted) into the equivalent printable code.  As the ASCII code exhibits the
desired contiguous property, and is almost universally used for character
representation, the assumption is a safe one.

As none of the routines change the link register, R14, they all return using a
simple move from the link register to the PC.  We do not bother to use MOVS
to restore the flags too, as they are not expected by the main program to be
preserved.

If a subroutine calls another one using BL, then the link register will be
overwritten with the return address for this later call.  In order for the
earlier routine to return, it must preserve R14 before calling the second
routine.  As subroutines very often call other routines (i.e. are 'nested'), to an
arbitrary depth, some way is needed of saving any number of return
addresses.  The most common way of doing this is to save the addresses on
the stack.

The program fragment below shows how the link register may be saved at
the entry to a routine, and restored directly into the PC at the exit.  Using
this technique, any other registers which have to be preserved by the routine
can be saved and restored in the same instructions:

;
 ; subEg.   Thi s  i s  an exampl e of  usi ng t he s t ack t o save 
; t he r et ur n addr ess  of  a subr out i ne.   I n addi t i on,  R0, R1
; and R2 ar e pr eser ved.
;
. s ub Eg

STMFD ( sp) ! , { R0- R2, l i nk } ; Sav e l i nk  and R0- R2
. . . . ; Do some pr ocess i ng
. . . .
L DMFD ( s p) ! , { R0- R2, pc } ^ ; Load PC,  f l ags and R0- R2

;

The standard forms of LDM and STM are used, meaning that the stack is a
'full, descending' one.  Write-back is enabled on the stack pointer, since it
almost always will be for stacking operations, and when the PC is loaded
from the stack the flags are restored too, due to the ^  in the instruction.
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Note that if the only 'routines' called are SWI  ones, then there is no need to
save the link register, R14, on the stack.  Although SWI  saves the PC and
flags in R14, it is the supervisor mode's version of this register which is used,
and the user's one remains intact.

Parameter passing
When values are passed to a routine, they are called the parameters, or
arguments, of the routine.  A routine performs some general task.  When
supplied with a particular set of arguments, it performs a more specific
action (it has been parameterized, if you like), and the job it performs is
usually the same for a particular set of arguments.  When a routine returns
one or more values to its caller, these values are known as the results of the
routine.

The term 'subroutine' is usually applied to a primitive operation such as
branch and link, which enables a section of code to be called then returned
from.  When a well-defined method of passing parameters is combined with
the basic subroutine mechanism, we usually call this a procedure.  For
example, out put  in the example above is a procedure which takes a
number between 0 and 9 in R1 and prints the digit corresponding to this.
When a procedure is called in order to obtain the results it returns, it is called
a function.

You may have heard the terms procedure and function in relation to high-
level languages.  The concept is equally valid in assembler, and when the
procedures and functions of a high-level language are compiled (i.e.
converted to machine code or assembler) they use just the primitive
subroutine plus parameter passing mechanisms that we describe in this
section.

In the example program of the previous section, the BASIC version used
global variables as parameters and results, and the assembler version used
registers.  Usually, high-level languages provide a way of passing
parameters more safely than using global variables.  The use of globals is
not desirable because (a) the caller and callee have to know the name of the
variable being used and (b) global variables are prone to corruption by
routines which do not 'realise' they are being used elsewhere in the
program.

Using registers is just one of the ways in which arguments and results can be
passed between caller and callee.  Other methods include using fixed
memory areas and the stack.  Each method has its own advantages and
drawbacks.  These are described in the next few sections.
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Register parameters
On a machine like the ARM, using the registers for the communication of
arguments and results is the obvious choice.  Registers are fairly plentiful (13
left after the PC, link and stack pointer have been reserved), and access to
them is rapid.  Remember that before the ARM can perform any data
processing instructions, the operands must be loaded into registers.  It makes
sense then to ensure that they are already in place when the routine is called.

The operating system routines that we use in the examples use the registers
for parameter passing.  In general, registers which are not used to pass
results back are preserved during the routine, i.e. their values are unaltered
when control passes back to the caller.  This is a policy you should consider
using when writing your own routines.  If the procedure itself preserves and
restores the registers, there is no need for the caller to do so every time it
uses the routine.

The main drawback of register parameters is that they can only conveniently
be used to hold objects up to the size of a word - 32-bits or four bytes.  This is
fine when the data consists of single characters (such as the result of SWI
ReadC) and integers.  However, larger objects such as strings of characters
or arrays of numbers cannot use registers directly.

Reference parameters
To overcome the problem of passing large objects, we resort to a slightly
different form of parameter passing.  Up until now, we have assumed that
the contents of a register contain the value of the character or integer to be
passed or returned.  For example, when we use the routine called pr ocess
in the earlier example, R0 held the value of the character to be processed,
and on exit R1 contained the value of the count of the number one  bits.  Not
surprisingly, this method is called call-by-value.

If instead of storing the object itself in a register, we store the object's
address, the size limitations of using registers to pass values disappear.  For
example, suppose a routine requires the name of a file to process.  It is
obviously impractical to pass an arbitrarily long string using the registers, so
we pass the address of where the string is stored in memory instead.

The example below shows how a routine called wr chS might be written and
called.  Wr chS takes the address of a string in R1, and the length of the
string in R2.  It prints the string using SWI  Wr i t eC.

Note that the test program obtains the address in a position-independent
way, using ADR. The first action of wr chS is to save R0 and the link register
(containing the return address) onto the stack.  The use of stacks for holding
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data was mentioned in ChapterThree, and we shall have more to say about
them later.  We save R0 because the specification in the comments states that
all registers except R1 and R2 are preserved.  Since we need to use R0 for
calling SWI  Wr i t eC, its contents must be saved.

The main loop of the routine is of the WHI LE variety, with the test at the top.
This enables it to cope with lengths of less than or equal to zero. The SUBS
has the dual effect of decreasing the length count by one and setting the flags
for the termination condition.  An LDRB is used to obtain the character from
memory, and post-indexing is used to automatically update the address in
R1.  

 DI M or g 200
 sp = 13
 l i nk  = 14
 cr  = 13 :  l f  = 10
 Wr i t eC = 0
 FOR pass=0 TO 2 STEP 2
 P%=or g
 [  opt  pass
 ;
 ; Exampl e showi ng t he use of  wr chS
 ;
 . t es t Wr chS

STMFD ( s p) ! , { l i nk } ; Save r et ur n addr ess
ADR R1,  s t r i ng ; Get  addr ess  of  s t r i ng
MOV R2, #s t r End- s t r i n g ; Load s t r i ng l engt h
BL wr c h S ; Pr i nt  i t
L DMFD ( s p) ! , { PC} ; Ret u r n

 ;
 . s t r i ng

EQUS " Tes t  s t r i ng" ; The s t r i ng t o be pr i nt ed
EQUB c r
EQUB l f

 . s t r End
 ;
 ;
 ; Subr out i ne t o pr i nt  a st r i ng addr essed by R1
 ; R2 cont ai ns  t he number  of  byt es i n t he st r i ng
 ; On ex i t ,  R1 poi nt s  t he t o byt e af t er  t he s t r i ng
 ;          R2 cont ai ns - 1
 ; Al l  ot her  r egi s t er s  pr eser ved
 . wr chS
 STMFD ( sp) ! ,  { R0, l i nk } ; Save R0 and r et ur n addr ess
 . wr chsLp
 SUBS R2,  R2,  #1 ; End of  s t r i ng?
 LDMMI FD( sp) ! ,  { R0, PC} ; Yes ,  so ex i t
 L DRB R0,  [ R1] ,  #1 ; Get  a char  and i nc  R1
 SWI Wr i t e C ; Pr i nt  t hi s  char ac t er
 B wr c hs L p ; Nex t  char
 ]
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 NEXT
 CALL t es t Wr chS

When the LDMMI  is executed we restore R0 and return to the caller, using a
single instruction.  If we had not stored the link on the stack (as we did in the
first instruction), an extra MOV pc , l i nk  would have been required to
return.

Call-by-reference, or call-by-address is the term used when parameters are
passed using their addresses instead of their values.  When high-level
languages use call-by-reference (e.g. var  parameters in Pascal), there is
usually a motive beyond the fact that registers cannot be used to store the
value.  Reference parameters are used to enable the called routine to alter
the object whose address is passed.  In effect, a reference parameter can be
used to pass a result back, and the address of the result is passed to the
routine in a register.

To illustrate the use of reference results, we present below a routine called
r eadS.  This is passed the address of an area of memory in R1.  A string of
characters is read from the keyboard using SWI  ReadC, and stored at the
given address.  The length of the read string is returned in R0.

 DI M or g 100,  buf f er  256
 Wr i t eC = 0
 ReadC = 4
 NewLi ne = 3
 c r  = &0D
 sp = 13
 l i nk  = 14
 FOR pass=0 TO 2 STEP 2
 P%=or g
 [  opt  pass
 ;
 ; r eadS.  Reads  a s t r i ng f r om keyboar d t o memor y 
 ; addr essed by  R1.  The st r i ng i s t er mi nat ed by  t he
char ac t er  
 ; &0D ( car r i age r et ur n)  On ex i t  R0 cont ai ns  t he l engt h of
 ; t he s t r i ng,  i nc l udi ng t he CR
 ; Al l  ot her  r egi s t er s  ar e pr eser ved
 ;
 . r eadS

STMFD ( sp) ! ,  { l i nk } ; Save r et ur n addr ess
MOV R2,  #0 ; I ni t  t he l engt h

. r eadSl p
SWI Re ad C ; Get  char  i n R0
TEQ R0,  #c r ; Was  i t  car r i age r et ur n?
SWI NE Wr i t e C ; Echo t he char ac t er  i f  not
STRB R0,  [ R1,  R2] ; St or e t he char
ADD R2,  R2,  #1 ; I nc r ement  t he count
BNE r ea dSl p ; I f  not  CR,  l oop

    SWI      NewLi ne            ; Echo t he newl i ne
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MOV R0,  R2 ; Ret ur n count  i n R0 f or  USR
L DMFD ( sp) ! ,  { PC} ; Ret u r n

 ]
 NEXT
 B%=buf f er
 PRI NT" St r i ng:  " ;
 l en%=USR r eadS
 PRI NT" Lengt h was  " ; l en%
 PRI NT" St r i ng was  " $buf f er

This time, a REPEAT-type loop is used because the string will always contain
at least one character, the carriage return.  Of course, a routine such as this
would not be very practical to use: there is no checking for a maximum string
length; no action on special keys such as DELETE or ESCAPE is taken.  It
does, however, show how a reference parameter might be used to pass the
address of a variable which is to be updated by the routine.

Parameter blocks
A parameter block, or control block, is closely related to reference
parameters.  When we pass a parameter block to a routine, we give it the
address of an area of memory in which it may find one or more parameters.
For example, suppose we wrote a routine to save an area of memory as a
named file on the disk drive.  Several parameters would be required:

Name of the file on the disk
Start address of data
End address (or length) of data
Load address of data
Execution address (in case it is a program)
Attributes (read, write etc.)

Now, all of these items may be passed in registers.  If we assume the name is
passed by address and has some delimiting character on the end, six
registers would be required.  Alternatively, the information could be passed
in a parameter block, the start address of which is passed in a single register.
The file save routine could access the component parts of the block using, for
example

LDR [ bas e, #of f set ]

where base is the register used to pass the start address, and of f set  is the
address of the desired word relative to base.

As the address of the parameter block is passed to the routine,the
parameters may be altered as well as read.  Thus parameter blocks are
effectively reference parameters which may be used to return information in
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addition to passing it.  For example, the parameter block set up for a disk
load operation could have its entries updated from the data stored for the
file in the disk catalog (load address, length etc.)

Parameter blocks are perhaps less useful on machines with generous register
sets like the ARM than on processors which are less well-endowed, e.g. 8-bit
micros such as the 6502.  However, you should remember the advantage of
only one register being needed to pass several parameters, and be ready to
use the technique if appropriate.

Stack parameters
The final parameter passing technique which we will describe uses the stack
to store arguments and results.  In chapter three we described the LDM and
STM instructions, for which the main use is dealing with a stack-type
structure.  Information is pushed on to a stack using STM and pulled from it
using LDM.  We have already seen how these instructions are used to
preserve the return address and other registers.

To pass parameters on the stack, the caller must push them just before
calling the routine.  It must also make room for any results which it expects
to be returned on the stack.  The example below calls a routine which expects
to find two arguments on the stack, and returns a single result.  All items are
assumed to occupy a single word.

;
; St ackEg.   Thi s  shows how t he s t ack  mi ght  be used
; t o pass  ar gument s  and r ecei ve r esul t s f r om a s t ack .   
; Bef or e ent r y,  t wo ar gument s  ar e pushed,  and on exi t  a
; s i ngl e r esul t  r epl aces  t hem. ;
. s t ac k Eg

STMFD ( s p) ! , { R0, R1 } ; Save t he ar gument s
BL s t ac k Su b ; Cal l  t he r out i ne
L DMFD ( s p) ! , { R0 } ; Get  t he r esul t
ADD s p, s p, # 8 ; ' Lose'  t he ar gument s
. . . .
. . . .

. s t ac k Sub
L DMFD ( s p) ! , { R4, R5 } ; Get  t he ar gument s
. . . . ; Do some pr ocess i ng
. . . .
STMFD ( s p) ! , { R2 } ; Save t he r esul t
MOV p c , l i n k ; Ret u r n

Looking at this code, you may think to yourself 'what a waste of time.' As
soon as one routine pushes a value, the other pulls it again.  It would seem
much more sensible to simply pass the values in registers in the first place.
Notice, though, that when st ackSub is called, the registers used to set-up
the stack are different from those which are loaded inside the routine.  This
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is one of the advantages of stacked parameters: all the caller and callee need
to know is the size, number and order of the parameters, not (explicitly)
where they are stored.

In practice, it is rare to find the stack being used for parameter passing by
pure assembly language programs, as it is straightforward to allocate
particular registers.  Where the stack scheme finds more use is in compiled
high-level language procedures.  Some languages, such as C, allow the
programmer to assume that the arguments to a procedure can be accessed in
contiguous memory locations.  Moreover, many high-level languages allow
recursive procedures, i.e. procedures which call themselves.  Since a copy of
the parameters is required for each invocation of a procedure, the stack is an
obvious place to store them.  See the Acorn ARM Calling Standard for an
explanation of how high-level languages use the stack.

Although the stack is not often used to pass parameters in assembly
language programs, subroutines frequently save registers in order to
preserve their values across calls to the routine.  We have already seen how
the link register (and possibly others) may be saved using STM at the start of
a procedure, and restored by LDM at the exit.  To further illustrate this
technique, the program below shows how a recursive procedure might use
the stack to store parameters across invocations.

The technique illustrated is very similar to the way parameters (and local
variables) work in BBC BASIC.  All variables are actually global.  When a
procedure with the first line

DEF PROCeg( i n t %)

is called using the statement PROCeg( 42) , the following happens.  The
value of i nt % is saved on the stack.  Then i nt % is assigned the value 42,
and this is the value it has throughout the procedure.  When the procedure
returns using ENDPROC, the previous value of i nt % is pulled from the stack,
restoring its old value.

The assembly language equivalent of this method is to pass parameters in
registers.  Just before a subroutine is called, registers which have to be
preserved across the call are pushed, and then the parameter registers are
set-up.  When the routine exits, the saved registers are pulled from the stack.

There are several routines which are commonly used to illustrate recursion.
The one used here is suitable because of its simplicity; the problem to be
solved does not get in the way of showing how recursion is used.  The
Fibonacci sequence is a series of numbers thus:
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0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ....

where each number is the sum of its two predecessors.  It can be expressed
mathematically in terms of some functions:

f(0) = 0
f(1) = 1
f(n) = f(n-2) + f(n-1)

where f(n) means the nth number in the sequence starting from zero.  It can
easily be translated into a BASIC function:

DEF FNf i b( n)  I F n<=1 THEN =n ELSE =FNf i b( n- 2) +FNf i b( n- 1)

To convert this into ARM assembler, we will assume that the number n is
passed in R1 and the result fib(n) returned in R0.

 DI M or g 200
 l i nk=14
 sp=13
 FOR pass=0 TO 2 STEP 2
 P%=or g

 [  opt  pass
 ; Fi bonacc i  r out i ne t o r et ur n f i b( n)
 ; On ent r y,  R1 cont ai ns  n
 ; On ex i t ,  R0 cont ai ns f i b( n) ,  R1 pr eser ved,  R2 cor r upt
 ;
 . f i b

CMP R1 , # 1 ; See i f  i t ' s  an easy  case
MOVLE R0 , R1 ; Yes ,  so r et ur n i t  i n R0
MOVLE PC, l i n k ; And r et ur n
STMFD ( s p) ! , { l i nk } ; Save r et ur n addr ess
SUB R1, R1, # 2 ; Get  f i b( n- 2)  i n R0
BL f i b
STMFD ( s p) ! , { R0 } ; Save i t  on t he s t ack
ADD R1, R1, # 1 ; Get  f i b( n- 1)  i n R0
BL f i b
L DMFD ( s p) ! , { R2 } ; Pul l  f i b( n- 2)
ADD R0, R0, R2 ; Add f i b( n- 2)  and f i b( n- 1)  i n R0
ADD R1, R1, # 1 ; Res t or e R1 t o ent r y  val ue
L DMFD ( s p) ! , { PC} ; Ret u r n

 ]
 NEXT
 FOR B%=0 TO 25

   PRI NT " Fi b( " ; B%" )  i s " ; USR f i b
 NEXT B%

The routine does not use the stack in exactly the same way as BBC BASIC,
but the saving of intermediate results on the stack enables f i b to be called
recursively in the same way.  Note that it is important that on return R1 is
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preserved, i.e. contains n, as specified in the comments.  This is because
whenever f i b is called recursively the caller expects R1 to be left intact so
that it can calculate the next value correctly.  In the cases when R1=0 or 1 on
entry it is clearly preserved; in the other cases, by observation R1 is changed
by -2, +1 and +1, i.e. there is no net change in its value.

You should note that, like a lot of routines that are expressed elegantly using
recursion, this Fibonacci program becomes very inefficient of time and stack
space for quite small values of n.  This is due to the number of recursive calls
made.  (For an exercise you could draw a 'tree' of the calls for some start
value, say 6.) A better solution is a counting loop.  This is expressed in BASIC
and ARM assembler below.

DEF FNf i b( n)
I F n <= 1 THEN =n
LOCAL f 1, f 2
f 2=0 :  f 1 = 1
FOR i =0 TO n- 2

f 1 = f 1+f 2
f 2 = f 1- f 2

NEXT i
= f 1

 DI M or g 200
 i  = 2      :  REM Wor k r egi s t er s
 f 1 = 3
 f 2 = 4
 sp = 13

 l i nk  = 14
 FOR pass=0 TO 2 STEP 2
 P%=or g
 [  opt  pass

 ; f i b -  us i ng i t er at i on i ns t ead of  r ecur s i on
 ; On ent r y,  R1 = n
 ; On ex i t ,  R0 = f i b( n)
 ;
. f i b

CMP R1 , # 1 ; Tr i v i al  t es t  f i r s t
MOVLE R0 , R1
MOVLE PC, l i n k
STMFD ( sp) ! , { i , f 1, f 2 , l i nk }  ; Save wor k  r egi s t er s  and

l i n k
MOV f 1 , # 1 ; I ni t i a l i s e f i b( n- 1)
MOV f 2 , # 0 ; and f i b( n- 2)
SUB i , R1, # 2 ; Set - up l oop count

. f i b Lp
ADD f 1, f 1 , f 2 ; Do cal c ul at i on
SUB f 2, f 1 , f 2
SUBS i , i , # 1

    BPL     f i bLp            ; Unt i l  i  r eaches - 1
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MOV R0 , f 1 ; Ret ur n r esul t  i n R0
L DMFD ( sp) ! , { i , f 1, f 2, PC} ; Res t or e and r et ur n

 ]
 NEXT pass
 FOR B%=0 TO 25

   PRI NT" Fi b( " ; B%; " )  i s  " ; USR f i b
 NEXT B%

Summary
The main thrust of this chapter has been to show how some of the familiar
concepts of high-level languages can be applied to assembler. Most control
structures are easily implemented in terms of branches, though more
complex ones (such as multi-way branching) can require slightly more work.
This is especially true if the code is to exhibit the desirable property of
position-indepence.

We also saw how parameters may be passed between routines - in registers,
on the stack, or in parameter blocks. Using the stack has the advantage of
allowing recursion, but is less efficient than passing information in registers.
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